Action de l’acide chlorhydrique sur les métaux

Ce qu’il faut savoir sur...

1 l’action de l’acide chlorhydrique sur le fer

La figure ci-dessous relate les expériences qui permettent d’expliquer l’action de l’acide chlorhydrique sur le fer.

Fig. 1. Étude de l’action de l’acide chlorhydrique sur le fer.
a) Début de l’expérience : les clous commencent à être attaqués.
b) Au bout de quelques instants : une effervescence se produit par suite d’un dégagement de dihydrogène tandis que les clous sont rongés.
c) De la soude est versée dans une partie de la solution provenant de l’expérience b : le précipité vert formé montre la présence des ions Fe²⁺ dans la solution.
d) Du nitrate d’argent est versé dans l’autre partie de la solution provenant de l’expérience b : le précipité blanc formé montre la présence des ions Cl⁻ dans la solution.

L’expérience de la figure 1 montre que le fer réagit avec l’acide chlorhydrique pour donner des ions fer (II) Fe²⁺ et un dégagement de dihydrogène H₂.
L’équation-bilan de la réaction s’écrit :

$$\text{Fe} + 2(\text{H}^+ + \text{Cl}^-) \rightarrow (\text{Fe}^{2+} + 2\text{Cl}^-) + \text{H}_2,$$

Les ions Cl⁻ n’interviennent pas puisque nous les retrouvons (expérience d). On obtient, en simplifiant par 2 Cl⁻ :

$$\text{Fe} + 2\text{H}^+ \rightarrow \text{Fe}^{2+} + \text{H}_2$$
2 le coupe H^+/H_2

L'équation-bilan ($Fe + 2H^+ \rightarrow Fe^{2+} + H_2$) peut être décomposée en deux demi-réactions.
- Les ions Fe^{2+} se forment aux dépens du fer ; on écrit la demi-réaction :
 \[Fe \rightarrow Fe^{2+} + 2e^- \].

Le fer, ayant perdu des électrons a été oxydé en ion Fe^{2+}.
- Le dihydrogène se forme aux dépens des ions H^+ ; on écrit la demi-réaction :
 \[2H^+ + 2e^- \rightarrow H_2 \].

L'ion H^+, ayant gagné des électrons, est donc l'oxydant.
Puisqu'à tout oxydant est associé un réducteur, et que l'on observe un dégagement de dihydrogène, le réducteur associé à H^+ est le dihydrogène H_2. On est donc amené à introduire le couple rédox H^+/H_2, tel que :

\[
\begin{align*}
H^+ + e^- & \rightleftharpoons \frac{1}{2} H_2 \\
\text{ou} & \\
2H^+ + 2e^- & \rightleftharpoons H_2.
\end{align*}
\]

3 le classement du couple H^+/H_2

La figure ci-dessous relate l'action de l'acide chlorhydrique sur quelques métaux.

Fig. 2. On remarque que l'acide chlorhydrique réagit sur le zinc et l'aluminium en donnant un dégagement de dihydrogène ; par contre, il ne réagit pas sur le cuivre.

Les expériences des figures 1 et 2 montrent que :
- l'ion H^+ réagit avec Zn, et Al ; L'ion H^+ peut donc oxyder Zn et Al. On déduit que H^+ est plus oxydant que Zn^{2+} et Al^{3+}.
- l'ion H^+ ne réagit pas avec le cuivre. L'ion H^+ ne peut donc oxyder Cu. On déduit que H^+ est moins oxydant que Cu^{2+}.

Le coupe H^+/H_2 se place entre le couple Cu^{2+}/Cu et Fe^{3+}/Fe (voir figure 3).

Fig. 3. Place du couple H^+/H_2 dans la classification des couples rédox.
Techniques expérimentales

CLASSER LE COUPLE H⁺/H₂ EN TIRANT PROFIT DES RESULTATS EXPERIMENTAUX

1) Protocole expérimental

On dispose des métaux suivants : aluminium, Al ; zinc, Zn ; fer, Fe ; plomb, Pb ; cuivre Cu et d’une solution d’acide chlorhydrique.

a) Introduire une petite quantité de chaque métal dans chacun des 5 tubes à essais.
b) Verser 2 à 5 mL d’acide chlorhydrique de manière à recouvrir le métal.
c) Noter les observations et caractériser, s’il y a lieu, le gaz qui se dégage en plaçant une flamme près de l’ouverture du tube.

2) Observations

<table>
<thead>
<tr>
<th>Métal + acide chlorhydrique</th>
<th>Al</th>
<th>Zn</th>
<th>Fe</th>
<th>Cu</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dégagement de H₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dégagement de H₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dégagement de H₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rien</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déagagement de H₂ à chaud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) Prévision d’une réaction d’oxydoréduction

Prenons, par exemple, l’action de l’acide chlorhydrique sur le zinc. L’équation-bilan de la réaction s’écrit : Zn + 2H⁺ → Zn²⁺ + H₂.

Les couples mis en jeu sont Zn²⁺/Zn et H⁺/H₂. L’équation-bilan montre que l’ion H⁺ est l’oxydant (2H⁺ + 2e⁻ → H₂) et que Zn est le réducteur (Zn → Zn²⁺ + 2e⁻). La réaction observée fait intervenir le réducteur le plus fort (ici Zn) et l’oxydant le plus fort (ici H⁺). On peut donc conclure que H⁺ est plus oxydant que Zn²⁺ et que Zn est plus réducteur que H₂.

Activités

Les couples rédox qui interviennent dans les cinq expériences sont : Al³⁺/Al, Zn²⁺/Zn, Fe³⁺/Fe, Pb²⁺/Pb, et Cu²⁺/Cu.

1) Un seul ion est plus oxydant que H⁺ : lequel ?
2) Quels sont les métaux plus réducteur que H₂ ?
3) Sachant que Pb est plus réducteur que Cu et que Al est plus réducteur que Zn, représentez les couples Pb²⁺/Pb et Al³⁺/Al sur un axe semblable à celui de la page 143.
4) Placez le couple H⁺/H₂ sur cet axe et recherchez un métal qui n’est pas attaqué par l’acide chlorhydrique.
1 l'acide chlorhydrique

a) Quelle est la formule de l'acide chlorhydrique ?
b) Comment est-il conditionné (nature de l'emballage) ?
c) Que signifient les indications portées sur l'emballage (voir étiquette ci-dessous) ?

d) Quelles précautions doit-on prendre lors de son utilisation ?
e) En admettant que la solution commerciale d'acide chlorhydrique soit à 10 moles par litre, indiquez à l'aide de schémas légendés comment on peut obtenir une solution à 0,1 mole par litre.

2 l'étude expérimentale de la réaction entre l'acide chlorhydrique et le fer

a) Comment mettre en évidence un dégagement de dihydrogène ?
b) Comment montrer que les ions Cl⁻ n'interviennent pas dans la réaction ?
c) Comment montrer qu'il se forme des ions Fe²⁺ ?

3 l'interprétation de la réaction entre le fer et l'acide chlorhydrique

a) L'acide chlorhydrique réagit sur le fer en donnant un dégagement de dihydrogène. Ecrivez la réaction.

b) Précisez l'oxydant et le réducteur dans la réaction précédente.
c) Quels sont les deux couples rédox mis en jeu dans cette réaction ?

4 les réactions entre quelques métaux et l'acide chlorhydrique

L'acide chlorhydrique et l'acide sulfurique dilué réagissent sur le zinc et le fer, mais ne réagissent pas sur le cuivre.
a) Quel est l'ion oxydant dans l'acide chlorhydrique et l'acide sulfurique ?
b) Écrivez les équations-bilans des métaux, cités ci-dessus, qui réagissent avec l'acide chlorhydrique.

5 la classification des couples rédox

Quelles sont les réactions possibles ?
1. Fe + 2H⁺ → Fe²⁺ + H₂ ;
2. Cu + 2H⁺ → Cu²⁺ + H₂ ;
3. H₂ + Zn²⁺ → 2H⁺ + Zn ;
4. Cu²⁺ + H₂ → Cu + 2H⁺.
Reportez-vous à la classification donnée page 143.

6 la place du couple H⁺/H₂ dans la classification des couples rédox

a) L'acide chlorhydrique réagit sur le plomb. Ecrivez la réaction correspondante.
b) L'acide chlorhydrique ne réagit pas sur le cuivre. Ecrivez la réaction inverse de celle qui se produirait si l'acide chlorhydrique attaquait le cuivre. Cette réaction est-elle possible ?
c) Situez le couple H⁺/H₂ par rapport aux couples mis en jeu dans cet exercice.
7 la réaction entre le fer et l'acide sulfurique

a) L'acide sulfurique réagit sur le fer en donnant un dégagement de dihydrogène.
Ecrivez la réaction.
b) Précisez l'oxydant et le réducteur dans la réaction précédente.
c) Quels sont les deux couples rédox mis en jeu dans cette réaction ?

8 Étude quantitative de la réaction de l'acide chlorhydrique sur le fer

Soit un litre d'acide chlorhydrique, 10^{-1} mol.L^{-1}.
On ajoute du fer jusqu'à ce que le pH de la solution devienne égal à 2.
a) Quelle est la masse de fer ajoutée ?
b) Calculez le volume de dihydrogène formé.
V = 24 L.mol^{-1}.

9 calcul mental d'un volume

Calculez mentalement le volume de dihydrogène obtenu en faisant réagir 2 moles d'aluminium avec de l'acide chlorhydrique en excès.
On donne : V_{molaire} = 24 L.mol^{-1} dans les conditions de l'expérience.

10 Mesure du volume molaire

L'action de l'acide chlorhydrique sur l'aluminium fait disparaître 1 g de métal et on obtient 1,33 L de dihydrogène.
Calculez le volume molaire dans les conditions de l'expérience.
Donnée : M(Al) = 27 g.mol^{-1}.

11 Exercice résolu

6 Mesurer le volume molaire d'un gaz

On verse de l'acide chlorhydrique sur 0,6 g de poudre d'aluminium.
Le montage de la figure permet de recueillir 810 mL de dihydrogène. Il ne reste plus d'aluminium en fin d'expérience.
Calculez le volume molaire du dihydrogène dans les conditions de l'expérience.
M(Al) = 27 g.mol^{-1}.

1') Ecrivez l'équation-bilan de la réaction entre l'acide chlorhydrique et l'aluminium.

\[\text{Al} + 3\text{H}_2\text{O} \rightarrow \text{Al}^{3+} + 3/2 \text{H}_2\]

2') Traduisez l'équation-bilan en quantités de matière (moles).

1 mole Al donne 3/2 mole H₂.

3') Traduisez les données de l'énoncé en quantités de matière (moles).

- Pour Al, on a n_{Al} = m/M avec M = 27 g.mol^{-1}, donc n_{Al} = 0,6/27 mol.
- Pour H₂, on a n_{H₂} = \nu/V avec \nu = 810 mL = 0,81 L et V, volume molaire (en L) dans le conditions de l'expérience, donc n_{H₂} = 0,81/V.

4') Regroupez les résultats des 2° et 3° étapes dans un tableau et établissez les proportions.

<table>
<thead>
<tr>
<th></th>
<th>Al</th>
<th>H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résultat du 2°</td>
<td>1 mol</td>
<td>3/2 mol</td>
</tr>
<tr>
<td>Résultat du 3°</td>
<td>0,6/27 mol</td>
<td>0,81/V mol</td>
</tr>
</tbody>
</table>

\[\frac{1}{0,6/27} = \frac{3/2}{0,81/V} \]

5') Tirez V des proportions en faisant un produit en croix et calculez sa valeur.

\[0,81/V = 0,6/27 \times 3/2 \text{ d'où } V = 0,81 \times 27 \times 2 \times \frac{1}{0,6 \times 3} = 24,3 \text{ L} \]

Rappelons que dans les conditions normales de température et de pression, V₀ = 22,4 L.mol⁻¹.