Le pH des solutions aqueuses

1 le pH

Ce qu'il faut savoir sur...

Toutes les solutions aqueuses contiennent des ions H₃O⁺.

La concentration en ions H_3O^+ est le quotient de la quantité de matière en H_3O^+ , notée n, par le volume V de la solution.

La concentration en H₃O⁺ est notée [H₃O⁺]. Elle s'exprime en mol.L⁻¹.

Concentration en
$$mol.L^{-1}$$
 \longrightarrow $[H_3O^+] = \frac{n}{V} \longrightarrow \begin{array}{c} Quantit\'e de matière d'ions \\ H_3O^+, en mol \\ V \longrightarrow Volume de la solution en $L$$

La concentration en ions H_3O^+ variant de 1 à 10^{-14} mol. L^{-1} environ, l'intervalle des valeurs que peut prendre $[H_3O^+]$ est très étendu. Aussi, a-t-on adopté une échelle logarithmique appelée échelle de pH. Par définition :

$$pH = -log[H_3O^+]$$
 ou $[H_3O^+] = 10^{-pH}$

On mesure le pH avec un pH-mètre (voir page 132).

2 le pH et le produit ionique de l'eau

2.1 L'autoprotolyse de l'eau

La mesure du pH de l'eau pure à 25° C donne pH = 7. On déduit que $[H_3O^+] = 10^{-pH} = 10^{-7} \text{ mol.L}^{-1}$. On explique la présence d'ions H_3O^+ dans l'eau par les chocs entre quelques molécules d'eau selon la réaction suivante appelée autoprotolyse de l'eau.

$$H_2O + H_2O \rightarrow H_3O^+ + OH^-$$

L'eau, étant électriquement neutre, contient autant d'ions H_3O^+ que d'ions OH^- . On écrit : $[H_3O^+] = [OH^-] = 10^{-7} \text{ mol.L}^{-1}$.

Bien sûr, l'autoprotolyse de l'eau concerne un très petit nombre de molécules d'eau puisque, dans un litre d'eau, il y a $\frac{1000 \text{ g}}{18 \text{ g.mol}^{-1}} = 55,6 \text{ moles H}_2\text{O}$ et seulement $10^{-7} \text{ mole H}_3\text{O}^+$ et $10^{-7} \text{ mole OH}^-$. Pour traduire ce fait, on écrit l'équation-bilan de l'autoprotolyse avec 2 flèches.

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

2.2 Le produit ionique de l'eau

Dans l'eau pure à 25°C, on a : [H₃O⁺] x [OH⁻] = 10⁻¹⁴. Ce produit des concentrations est appelé produit ionique de l'eau, noté Ke. Nous admettrons que ce résultat reste valable pour toutes les solutions aqueuses.

Pour toutes les solutions aqueuses :

 $[H_3O^+]$. $[OH^-]$ = Ke, avec Ke = 10^{-14} à 25°C.

3

le pH des solutions aqueuses

3.1 Solutions acides

Expliquons l'expérience de la figure 1. Dans l'eau, nous avons $[H_3O^+] = [OH^-] = 10^{-7} \text{ mol.L}^{-1}$. L'addition d'acide chlorhydrique $(H_3O^+ + Cl^-)$ apporte un supplément d'ions H_3O^+ dans la solution. Il en résulte que $[H_3O^+] > 10^{-7} \text{ mol.L}^{-1}$ et, puisque $[H_3O^+] [OH^-] = 10^{-14}$, $[OH^-] < 10^{-7} \text{ mol.L}^{-1}$.

L'application de la formule pH = $-\log [H_3O^+]$ montre que, si $[H_3O^+] > 10^{-7}$ mol.L⁻¹, alors pH < 7.

Une solution est dite acide si : $pH \le 7$, soit $[H_3O^+] > 10^{-7} \text{ mol.L}^{-1}$ et $[OH^-] \le 10^{-7} \text{ mol.L}^{-1}$.

Expliquons l'expérience de la figure 2.

Dans l'eau, on a $[H_3O^+] = [OH^-] = 10^{-7} \text{ mol.L}^{-1}$. L'addition de soude $[Na^+ + OH^-]$ apporte un supplément d'ions OH^- dans la solution. Il en résulte que $[OH^-] > 10^{-7} \text{ mol.L}^{-1}$ et que $[H_3O^+] < 10^{-7} \text{ mol.L}^{-1}$. On a alors pH > 7.

Une solution est dite basique si : pH > 7 ; [OH-] > 10^{-7} mol.L-1 ; [H₃O+] < 10^{-7} mol.L-1.

3.3 Solutions neutres

Une solution est dite neutre, c'est-à-dire ni acide, ni basique, si son pH, à 25°C, est égal à 7. Dans ce cas, on a :

 $[H_3O^+] = [OH^-] = 10^{-7} \text{ mol.L}^{-1}$.

Certaines eaux naturelles ainsi que l'eau salée sont des solutions neutres.

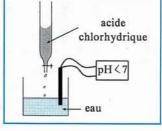


Fig.1. pH d'une solution acide. Le pH diminue quand on verse de l'acide chlorhydrique dans l'eau. Une solution acide a un pH inférieur à 7.

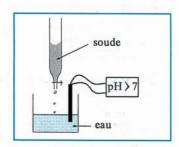


Fig.1. pH d'une solution basique. Le pH augmente quand on verse de la soude dans l'eau. Une solution basique a un pH supérieur à 7.

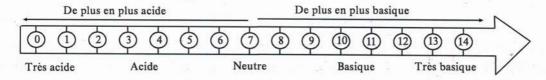


Fig. 4. L'échelle de pH. Les solutions utilisées au laboratoire ont, en général, une concentration inférieure à 1 mol.L^{-1} . Ainsi, si $[H_1O^+]=1 \text{ mol.L}^{-1}$, pH= 0 et si $[OH^-]=1 \text{ mol.L}^{-1}$, alors $[H_1O^+]=10^{-14} \text{ mol.L}^{-1}$ et pH= 14. En allant des solutions fortement acide aux solutions fortement basiques, le pH varie de 0 à 14.

Vérifiez vos connaissances sur

1 la concentration en ions H₃O⁺

- a) Définissez la concentration en ions H₃O⁺.
- b) Complétez le tableau suivant.

n _{H3O} +en mol	0,01	0,004	2.10^{-3}
v volume en mL	20	100	500
[H ₃ O ⁺] en mol.L ⁻¹			

2 le calcul du pH à partir de [H₃O⁺]

- a) Ecrivez la relation de définition du pH.
- b) Complétez le tableau suivant.

[H ₃ O ⁺] en mol.L ⁻¹	0,2	2.10-2	3,4.10 ⁻⁷	0,048
pH		v 1		

Méthode : avec une calculatrice, afficher la valeur de $[H_3O^*]$, appuyez sur la touche LOG, vous lisez la valeur de -pH. Changez le signe pour avoir le pH.

3 le calcul de [H₃O⁺] à partir du pH

- a) Ecrivez la relation permettant de calculer [H₃O⁺] connaissant le pH.
- b) Complétez le tableau suivant.

pН	2	2,9	6,8	10,2	13,3
[H ₃ O ⁺] en mol.L ⁻¹					

Exemple. pH = 3,4. On a alors $[H_3O^+]=10^{-3.4}$ mol.L⁻¹. Il faut exprimer $[H_3O^+]$ en notation scientifique, c'està-dire sous la forme a.10⁻ⁿ avec n nombre entier positif. Avec une calculatrice, affichez -3,4 puis appuyer sur la touche INV LOG.

On lit: 0.000398 ou $3.98.10^{-4}$ que l'on arrondit à $4.0.10^{-4}$. Dans certains modèles de calculatrices, il suffit de faire $10^{-3.4}$ à l'aide de la touche 10^x ou y^x avec y = 10.

4 l'autoprotolyse de l'eau.

- a) Quel est le pH de l'eau à 25° C? Expliquez.
- b) Quels sont les ions présents dans l'eau pure? d'où proviennent ces ions?
- c) Ecrivez l'autoprotolyse de l'eau et expliquez pourquoi on met deux flèches dans l'équation-bilan.

5 le produit ionique de l'eau

- a) Définissez le produit ionique de l'eau.
- b) Complétez le tableau suivant.

[OH-]	10-2	2.10-2	10-7	10-9	2,3.10-12
[H ₃ O ⁺]					
pH		K			

6 l'évolution du pH d'une solution acide

- a) Quand dit-on qu'une solution est acide ? (réponse la plus complète possible).
- b) Une solution d'acide chlorhydrique a un pH = 2. Que devient le pH si on double le volume de la solution.

7 l'évolution du pH d'une solution basique

- a) Quand dit-on qu'une solution est basique ? (réponse la plus complète possible).
- b) Une solution de soude a un pH = 11. Que devient le pH si on double le volume de la solution ?

Applique2 vos connaissances

8 Dilution d'une solution acide

a) Quel volume d'eau faut-il ajouter à 10 mL d'une solution de pH=3 pour que le pH de la solution obtenue soit égal à 5 ?

b) décrivez, à l'aide de schémas, le mode opératoire de la dilution.

9 Dilution d'une solution basique

a) Quel volume d'eau faut-il ajouter à 10 mL d'une solution de pH = 12 pour que le pH de la solution obtenue soit égal à 9 ?

b) Décrivez, à l'aide de schémas, le mode opératoire de la dilution.

10 Précision dans la mesure du pH

a) Avec un pH-mètre on mesure pH = 3.4 ± 0.1 . Calculez l'erreur sur $[H_3O^+]$ et déduisez en %, la précision de la mesure.

b) Avec un papier-pH, on mesure pH = 3,5 \pm 0,5. Calculez l'erreur sur $[H_3O^+]$ et déduisez, en %, la précision de la mesure.

11 Obtenir une solution acide de pH donné

a) On dispose de 100 mL d'une solution d'acide chlorhydrique de pH=1,4. Quel volume d'eau faut-il ajouter pour obtenir une solution de pH=2?

b) On dispose d'un litre d'eau pure à 25°C. Quel volume de chlorure d'hydrogène HCl faut-il dissoudre dans cette eau pour obtenir une solution d'acide chlorhydrique de pH=1?

<u>Données</u>: $HCl + H_2O \rightarrow H_3O^+ + Cl^-$. Volume molaire: 25 L.mol⁻¹.

12 Obtenir une solution basique de pH donné

a) On dispose de 100 mL de soude de pH = 13.
 Calculez le volume d'eau à ajouter pour obtenir pH = 12.

b) On dispose de 500 mL d'eau à 25°C. Quelle masse d'hydroxyde de sodium faut-il dissoudre dans cette eau pour obtenir pH = 12 ?

Données : $M(Na) = 23 \text{ g.mol}^{-1}$. $M(H) = 1 \text{ g.mol}^{-1}$. $M(O) = 16 \text{ g.mol}^{-1}$.

13 Exercice résolu

Une neutralisation acide-base

On dispose d'une solution de soude de concentration $C_b = 10^{-1} \text{ mol.L}^{-1}$ et d'une solution d'acide chlorhydrique de concentration $C_a = 5.10^{-2} \text{ mol.L}^{-1}$.

a) Calculez le pH de chacune de ces deux

b) On prélève $v_a = 20 \text{ mL}$ d'acide chlorhydrique que l'on verse dans un becher. On verse ensuite la soude dans le becher.

Quel volume v_b de soude faut-il verser pour que tous les ions H_3O^+ de l'acide soient neutralisés par les ions OH^- de la soude. Quel est alors le pH de la solution?

 $\frac{\text{Donn\'ee}}{\text{Donn\'ee}} : \text{H}_3\text{O}^+ + \text{OH}^- \xrightarrow{\text{neutralisation}} 2\text{H}_2\text{O}.$

Solution

1) * La soude (Na⁺ + OH⁻) a donc une concentration en OH⁻ égale à C_b , soit $[OH^-] = 10^{-1} \text{ mol.L}^{-1}$. Puisque $[H_3O^+]$ $[OH^-] = 10^{-14}$, on déduit : $[H_3O^+] = 10^{-13} \text{ mol.L}^{-1}$ et pH = 13.

* L'acide chlorhydrique $(H_1O^+ + CI^-)$ a une concen-

tration en H_3O^+ égale à C_s , soit $[H_3O^+] = 5.10^{-2}$ mol. L^{-1} et pH = 1,3.

2) <u>Calculons</u> $n_{H_3O^+}$ venant de l'acide chlorhydrique. $n_{H_3O^+} = C_*V_* = 5.10^{-2} \times 20.10^{-3} = 10^{-3} \text{ mol.}$ $mol.L^{-1}$ L

Calculons nor venant de la soude.

 $n_{OH^{-}} = C_b V_b = 10^{-1} \times V_b$

If y a neutralisation si $n_{H_3O^{+}} = n_{OH^-}$,

soit $10^{-3} = 10^{-1} \times v_b$, d'où $v_b = 10^{-2} L$ ou 10 mL.

Le pH de la solution est égal à 7 car seuls les ions H_3O^+ et OH^- de l'eau sont présents.